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Abstract. We relate the structure functions of deep inelastic lepton—nucleon scattering to current—current
correlation functions in a Euclidean field theory depending on a parameter r. The r-dependent Hamiltonian
of the theory is P° — (1- r)PS, with P° the usual Hamiltonian and P® the third component of the
momentum operator. We show that a small x; in the structure functions corresponds to the small r limit
of the effective theory. We argue that for » — 0 there is a critical regime of the theory where simple scaling
relations should hold. We show that in this framework Regge behaviour of the structure functions obtained
with the hard pomeron ansatz corresponds to a scaling behaviour of the matrix elements in the effective
theory where the intercept of the hard pomeron appears as a critical index. Explicit expressions for various
analytic continuations of the structure functions and matrix elements are given as well as path integral
representations for the matrix elements in the effective theory. Our aim is to provide a framework for truly
non-perturbative calculations of the structure functions at small zg; for arbitrary Q2.

1 Introduction

In this article we shall discuss the small zp; behaviour
of the structure functions of deep inelastic lepton—nucleon
scattering (DIS). The findings of the experiments H1 and
ZEUS at HERA (for recent summaries see [1-3]) have
brought this topic to the forefront of theoretical interest.
Soon more data will come from HERA2. There are numer-
ous suggestions for the theoretical description of the small
xpj behaviour of the structure functions; see for instance
[4-6]. Let us just mention a few of these approaches with
representative references.

As the first group of approaches let us mention the ones
based on perturbative QCD, which allows one to derive
evolution equations for the structure functions. It should
be kept in mind that already in the derivation of these
evolution equations one has to make various assumptions
and their practical use involves further approximations.

Most popular and widely used is the DGLAP equa-
tion [7] to calculate the evolution of the structure func-
tions with Q? (see for instance [1, 3, 8]). Improvements of
the DGLAP method in fixed order in the strong coupling
parameter ag, involving resummations to all orders in «s,
have recently been proposed [9]. Another time-honoured
approach is based on the BFKL equation [10] which is de-
scribed in detail for instance in [11]. However, very large
higher-order corrections have been found in this approach
[12]. Different recipes for dealing with this problem have
been proposed [13].

# e-mail: O.Nachtmann@thphys.uni-heidelberg.de

Other approaches make more assumptions and could
be called QCD-based or -inspired models. Very popular at
the moment are dipole models [14, 15]. Other approaches
are based on the semiclassical approximation [6,16-18]
and on the colour glass condensate idea [19, 20].

Quite a different type of approach is based on Regge
theory. It was shown in [21,22] that the small zp; be-
haviour of the structure functions can be well described
using two pomerons, a hard and a soft one. Both pomerons
are assumed to behave like simple Regge poles with linear
trajectories.

In this article we continue the investigations of the
approach [23] where the behaviour of the structure func-
tions at small zp; is related to that of matrix elements
in an effective Euclidean field theory. In [23] this was ex-
plored for a model scalar field theory and it was argued
that the limit xp; — 0 corresponds to critical behaviour
in the effective theory. Here we extend these considera-
tions to the case of QCD. The aim of this approach is to
provide a framework where the small xp; behaviour of the
structure functions can be calculated from first principles
using truly non-perturbative methods, for instance lattice
methods.

Our article is organised as follows. In Sect.2 we dis-
cuss kinematics, the reduced matrix elements free of kine-
matical singularities and the analytic continuation from
the real to the imaginary v-axis. Section 3 deals with the
Deser—Gilbert—Sudarshan (DGS) representation which we
use for further analytic continuations. In Sect. 4 we discuss
our effective Hamiltonians and Lagrangians for QCD, both
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Fig. 1. Virtual Compton scattering on a nucleon

in Minkowski and Euclidean space. Section 5 contains phe-
nomenological applications and Sect. 6 our conclusions.

2 Kinematics and analytic continuation
in the v-plane

In this section we recall first some definitions and results
from DIS. The central object of our study is the forward
virtual Compton scattering amplitude for nucleons. The
absorptive part of this amplitude gives for real v the mea-
surable cross sections of DIS. Our theoretical investiga-
tions will concentrate on the amplitude at imaginary val-
ues of v, from which nevertheless we can obtain informa-
tion on these cross sections.

2.1 Kinematics

We study the forward virtual Compton scattering ampli-
tude (Fig. 1)
7" (q) + N(p) = 7"(a) + N(p),

where IV stands for proton or neutron. We consider only
spacelike virtual photons, ¢> = —Q? < 0, and the ampli-
tude averaged over the nucleon spin. The familiar Feyn-
man amplitude for (2.1) is

4
(D, Q) 2]\4/d3[:e

x 5 Z< (PIT" T ()1, (0)|N (p))-

spins

(2.1)

(2.2)

Here M is the nucleon mass, J,(x) is the hadronic part
of the electromagnetic current, and T* indicates the co-
variant version of the T-product (see for instance [24]). It
is understood that only the connected part of the matrix
element is taken. All our conventions on kinematics follow
[25].

In the following we shall, however, not work with (2.2)
but with the retarded amplitude

4
2M,/dxe

x5 3 (N0,

spins

T (p,q) =

(2.3)

(@), Ju(0)]cov [N (),

where we define

0(z°)[ (%), T (0)]cov = T*(J,u(2)J,(0)) — J,(0)J, ().
(2.4)
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The standard W, tensor of DIS is
_ 1 4 . iqx
Wiulp.0) = 7 [ dlae™ Mo (o). (25)

where

M) = 5 32 (N2 L OIN ().

spins

(2.6)

The expansion of W, in terms of the structure functions
W1,2 reads, for pg > 0,

W/u/(pa Q) = ( Juv + q;qy> Wl(V7 Qz)

5 o ) -

v=pq/M, Q°=— (2.7)

In the usual way we define the structure functions Fj o 1,
by

Fl(IBj7Q2) = 2MW1(Va Q2)a
Fy(xpj, Q%) = vWa(r,Q?),

Fr (5, Q%) = Fa(wgj, Q%)
aM? SN\ 7!
— (1 + Q2$]23J> -TBjFl (xBja QZ)a
QQ
rBj = 2MI/) (28)

and the transverse and longitudinal cross sections

47r2a0T(V, Q%) =Wi(r,Q*) = ﬁFﬂxsyQQ»
MUL(U, Q% = VQC—;QQWQ(V, Q%) — Wi(v, Q%)
= 2Ml:ij (1 + 422422332&‘) FL(zg;j, @),
K=v-— % (2.9)
The expansions for T}, (2.2) and T)e" (2.3) read
T (p,q) = (gw + q‘;?) Ty (v, Q%) (2.10)

1 v re
v (pu - (pZ;q“> (pu - (pglq )TZF’ ‘1, Q%),

where now —oco < pg < oco. For Q? fixed, TJF(I/, Q?) and
Ti*(r, Q%) (j = 1,2), are limits of functions T;(v, Q%)
analytic in the cut v-plane as shown in Fig. 2. The position
of the nucleon poles is v = £Q%/(2M); the cuts start at

£[Q% + (M +my)? — M?)/(2M),  (2.11)

where m, is the pion mass. We have, for real v and j =
L2,

v =2y =

T} (v, Q%) = [lim T;(v(1 +ie), Q?), (2.12)
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Imv

Fig. 2. The v-plane with the position of the nucleon poles (x)
and the cuts. The functions T} (v, Q%) (j = 1,2) are obtained
along the short dashed line, T} (v, Q?) along the long dashed
line

T;et(y7 Q?) = EEIEO T;(v +ie, Q%), (2.13)

I T (v, Q%) = 0(v)W; (v, Q%) + 0(—v)W;(—v, Q2),
(2 14)

I T3 (v, Q%) = 0(v)W;(v, Q) — 0(—1)W; (—v, Q).
(2.15)

For our purpose it is convenient to define in addition
the following scalar amplitudes:

T (0, Q) = —g™' T (p,q) (2.16)

37 (,0?) — ¥ 5Q2Tm< Q).

T3 (1,Q%) = M~ " T (p. ) (2.17)
2 2 2\ 2

_ Y 5Q T, Q?) + (”5269) (1, Q2).

In a similar way we define for real v the functions T£ b
and W, ; and for complex v the functions T, ,(v, Q?). The
latter are analytic in the cut v-plane and have as boundary
values for Imy — +0 the functions 7% (v, Q).

2.2 Analytic continuation in the v-plane

We are interested in the behaviour of W1 »(v, Q?) for fixed
Q? > 0 and v — co. Instead of investigating the structure
functions Wi o directly we shall study first the behaviour
of the functions T »(v, Q%) or equivalently T, (v, Q?) for
large imaginary v, that is for v = in with n — oco. Then
we use the Phragmén-Lindeldf theorem (see theorem 5.64
of [26]) to relate the behaviour of the amplitudes for large
real and imaginary values of v. This has been discussed in
detail in Appendix A of [23].

We follow now the same strategy as in [23]. We work
in the rest system of the nucleon and choose the direction
of q as third axis of the coordinate system:

(2.18)

(o) o= (o)
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Using rotational symmetry and the same arguments as in
[23], we can represent the functions T}, (v, Q%) for Im v >
0 as follows:

T, (v, Q%) = !

/1/2+Q2
/ da?® / da323 expliz®v — iz®\/v? + Q2]

X 3 Z(N(p)l( —g")0(=°)

X [Jﬂ(xge?n xo)a JV(O)]cole(p»a (2.19)
Ty, Q%) = ———

NGET
/ dx/ dxmexplxl/flx \/m]
x5 S (NG)OGE)

spins
0)7 JO(O)]C0V|N<p)>'
For v = in and n > Q we get

T.(in, Q%) =

x [Jo(zPes, (2.20)
i
M/ — Q2
/ da® / da323 exp[—2®n + 2°/n? — Q2]

x5 Z<N(p)|( —g"")0(a")

X [Jp‘(xse& ‘ro)v JV.(O)]COV|N(p)>7
Ty(in, Q) = :

NG
/ dx/ da323 exp| x077+$3\/772——Q2]

EPILOIED

%), Jo(0)]cov |V (p)). (2.22)

The commutators in (2.19)-(2.22) vanish for |z3| > 2°
and thus the effective integration range is |23| < 2°. This
makes the integrands in (2.19) and (2.20) exponentially
damped for Imy > 0 and represents the standard way of
analytic continuaton of T (v, Q?) into the upper half v-
3| =

(2.21)

x [Jo(z%es3, x

plane. However, the singularities on the lightcone |z
2% make it advisable to keep the 2® integrals in (2.19)-
(2.22) as running from —oo to +o0. From T, ;(in, Q*) we
can derive T o(in, Q%) using (2.16) and (2.17).

In the next section we will derive another representa-
tion for T4 2(in, @?) in which the integration path avoids
the lightcone.

3 The matrix element M,

In this section we list general properties of the matrix ele-
ment M, (x,p) of (2.6) and discuss its analyticity proper-
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ties using the Deser—Gilbert—-Sudarshan (DGS) represen-
tation [27,28].

3.1 General properties of M, (z, p)

Hermiticity of the electromagnetic current gives

M (z,p)" = My, (—2,p). (3.1)
Time reversal invariance of QCD requires
My (2, p) = M (2, p'), (3.2)
where z'# = xu,p/” = Py
Current conservation implies
0
2o _
5‘:WM (x,p) =0,
0
Ep V./\/l“”(x p) =0. (3.3)

For 2? < 0 the currents J,(x) and J,(0) in
which leads to

(2.6) commute,

M, (z,p) = My, (—2,p), for 2% < 0. (3.4)

The expansion of M, (z,p) in terms of two causal
scalar functions which are free from kinematical singular-
ities and where (3.1) to (3.4) are satisfied automatically

[29] reads

MW(%p) = [g;wD - auau]Ml(xp7 xQ)
+ [p;vaD - (pa) (ppaz/ +puaﬂ) + guu(pa)2]
x My (zp, 2?). (3.5)
The invariant functions M; (j = 1,2) satisfy
Mj(l'p, 1,2) = M;k(_‘rpa x2) (36)
and
M (zp,2%) = M;(—xp,2?), for 2? < 0. (3.7

3.2 Representations of amplitudes in terms of M 5

Inserting (3.5) into (2.5) we obtain the structure functions
Wi 2 of (2.7) in terms of the Fourier transforms of M o:

2
2\ Q 4, . iqx 2
Wi (v, Q%) = Y d*xe'? My (zp, )
(pQ)2 4 . igx 2
+ M d*ze'? My(zp, 2°),  (3.8)
2
Walw, @) = U2 [ alena?). (39)

Note that in (3.9) the kinematic zero of W (v, Q?) at Q% =
0 is made explicit, as it should be. For the cross sections
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(2.9) we get

K 1 :
47T2a0T(V, Q%) = ey /d4xelq$

(3.10)

x [M?v2 My (zp, 22) — Q* My (zp, 22)],
2 .
oL @) = o [ e (3.11)
X [M?Ma(zp, 2*) + M (zp, 2?)].

Inserting (3.5) into (2.3) and using (2.10) and rotational
symmetry in the nucleon rest frame, we get

1

WATE

/ dx/ da3z3 expliz®v — iz \/m]
X { — Q*[My (zp, 2*) — M (xp, 2?)]
+ M2 Ma(ep,a?) — Mi(ap, 22)] },
_Me
V@
></ dx/ daz32? expliz®v — iz? \/m]

X [MQ(xpa )

Tert(Va QQ) =

(3.12)

Tget(ya Qz) ==

— M (ap, 2], (3.13)

where
33‘2 — (.%‘0)2 _ (.%‘3)2.

In the following we will make a change of variables as
in [23] and replace (20, 2%) by (20, r), where

xp ="M, (3.14)

r=1- 0 (3.15)
We define
MG (2°,7) - = My(2°M, (2°)2r(2 — 1))
(j=12) (3.16)

With this we get

Tret(?Q): dTl—’r‘

M\/m/
X /0 d:co(glco)2 exp[ixo(z/ -(1- T)\/m)]
< { - QM (M (°,7))"]
+ MAA(MG (2%, r) = (Mg (2% 7)"]},
M [~
ViZ+@2 )
/ da®(2°)? exp[iz® (v — (1 — T)\/m)]

(M; (2°,7))7].

L) -
(3.17)

T3 (v, Q%) = — d?"(l —r)

x [My (2°,7) - (3.18)
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3.3 DGS representations for M 5

For the causal functions My o(xp, 2?) defined in (3.5) we
can write down DGS representations [27,28]. The beha-
viour of the structure functions for small xp; as measured
in experiments (see Sect. 5 below) suggests that the DGS
representation for My needs no subtraction, whereas M
needs subtractions. Thus we write

/ ds/ A fa(s

lA"'(%s) =
i

. 1
2(am, ¢ explicpn) s A (a,5),

(3.19)

(2717) /d4 e (k)5 (k* — )

1 s 1/2 .
T in? (M> K ( s(—a? +1ex0)) (3.20)

is one of the usual invariant functions given in terms of
the modified Bessel function K. In (3.19) fs is a function
for which (3.6) and (3.7) require

f2(sa<) = fZ(sa _C) =
Thus, (3.19) can also be written as
¢) cos(Cpx) %A+(x, s).

/ ds / aCfas
(3.22)

For M; we write down a subtracted DGS representation:

Ml(xp7m2):/ ds
0

f3(s,Q). (3.21)

2(xp, @

x { 1) + / 11 d¢ fu(s, ¢)[eos(¢pz) — 11}

« %A+(x,s), (3.23)
where
D)= (1)
fl(SaC):fl(sv_C):ff(svg) (324)

In [27,28] the DGS representation is primarily dis-
cussed for the matrix element of the commutator and the
T-product of two currents. From the DGS representation
of the T-product we get immediately the representation
for the ordinary products of currents used here.

Let us now switch to the matrix elements ./\/l (2° r)

(3.16) to discuss their behaviour in r for fixed z°. For /\/l2
we get from (3.19)—(3.22), for 2° > 0,

M; (2°,r) = Ma(2%, 7€)
:/ ds/ d¢ fa(s, ¢) cos(¢Mz?)
X 47r2 xo (—r(2 )+l€)_1/2

K, (51/%0(4(2 —r)+ 16)1/2) . (3.25)
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Imr
ie/2
1 1 Rer
0 1 2
2-ie/2
a
Imr
2+ie/2
1 1 Rer
0 1 2
-ie/2
b

Fig. 3a,b. Cut structure of/\/l(x r,e) a and M (z°,r*,¢) b
in the complex r-plane for 0 < ¢ << 1

For clarity we keep in the following discussion the € param-
eter (e > 0) as an explicit argument. A similar expression

is obtained for M7 from (3.23).

We will now make the assumption that the weight
functions f;(s, ¢) are sufficiently well behaved, so that the
representation (3.25) for Mvg(xo,r, €) and the analogous
one for le allow an analytic continuation in r at fixed

2% and e. The singularity structure of Mvj(xo, r,€) in the
r-plane can then be read off from (3.25). There are two

branch points, at 7 = 1 F (1 — i€)'/?, giving, for € < 1,
i
T =€,

2

We draw the associated cuts to the right (see Fig. 3a). The
cut structure of

(M; (2%, r*,€))* = M; (2%, r, —¢) (3.27)

is shown in Fig. 3b. Looking now at (3.17) and (3.18) we
see that the r integrations run on the real r-axis from r =

—o0 to r = +o00 over M (20, 7,€) and from r = oo back

and r~2-— %e. (3.26)

to r = —o0 over M, (@Y, r, —€). Deforming the contours
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Imr

Rer

=l

K -

Fig. 4. Cut structure of M, (z°,
complex r-plane. For 7 see (3.34)

r) and the curve C in the

slightly we can obtain T1% as integrals over the analytic
functions

Mvj (2%, r) = M]’(.’L‘O, r,0)

along a curve C (see Fig. 4). The curve C comes from the
second sheet, moves onto the first sheet between r = 0
and 2, circles 7 = 0 and moves again onto another sheet
between r = 0 and 2. We get

(3.28)

ret _ 1 _
T (v, Q%) = M\/m/cdr(l r)

X /00 dz?(2°)? explia® (v — (1 — )12 + Q2)]
0

X {—Q2M1(xo,r) M?v gﬂz(xo,r)}’

2

T30, Q%) = —— a2

V@ e
X /0 dxo(:z:o)2exp[ioz0(l/ - (1- T)\/m)]

x Mo (2, 7).

(3.29)

dr(l—r7)

(3.30)

Note that the matrix elements ./\/l (20, 7) of (3. 16) for 0 <

r < 2, are the limits of the analytm functions M (29 r)
below the cut:

./T/l/j_(aro,r) = lim Mj(xo,r—ie)

Jim 0<r<2).

(3.31)

We can now use (3.29) and (3.30) to perform the an-
alytic continuation in v to the upper half v-plane in an
alternative way to that of Sect.2.2. We move the curve C
arbitrarily close to the positive real r-axis, r > 0, and use
the inequalities (A.1) of [23] to show that the exponen-
tials in (3.29) and (3.30) are damped, for Imv > 0. We
are interested in 77 o for large imaginary v. With v = in,
1 > @, the exponentials can be written as
(1 =r)Vr? +Q)lv=in = exp[—mo/:@(n(ér:)))]é)

expliz® (v —
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_ 11+7
x(nﬂ") - [77_ (1_T) 772 _Q2] t= 5T+f7 (333)
2
2

r=— 3.34
r 22 0 o (3.34)

1- < 4y J1-%

U U

With (3.32) we get for the analytically continued functions
Ty o from (3.29) and (3.30)

N N (1 —r > 29(29)2
x exp[—z"/z(n, 1))
X [Qz//\/lvl(xo,r) +M2n2Mv2(xO,r)], (3.35)
in, Q%) = 71MQ2 r(l—r h 29(20)?
Tin @) = oo [ [ ate)

20 /z(n, )] Ma(a°, 7).

We note that for given Q? and > Q the characteristic
damping length Z(n,r) is positive, for

X exp[— (3.36)

Rer > —7. (3.37)
We will thus take in the following the curve C' in (3.35)
and (3.36) to be to the right of —7 as shown in Fig.4. In
this way we get integral representations of Tj o (in, Q?)
where the integration path avoids the singularities of the
integrand at r = 0, 2, which correspond to the lightcone.

The representations (3.35) and (3.36) will be used as
a basis for the discussion in the following sections.

Let us now estimate the relevant integration range in r
n (3.35) and (3.36), for n — co. We see from (3.33) that,
for fixed r, we have

z(n,r)~n~t for 7 — oo, (3.38)
Then the factors exp(—z°/z(n,r)) will suppress such con-
tributions to the integrals (3.35) and (3.36). Now we can
keep the curve C' in Fig. 4 at finite fixed values of  except
for the region between r = 0 and r = —7 where C' has
to cross the negative real axis. Taking as a typical value

r=—T7/2 we get

1 20 +7 2
T|\n,—=7 :wwl for
2

- QQ, 7 — 0.

(3.39)

Thus, for n — oo this region, where Z(7,7) becomes very
large, will give the main contribution to the integrals
(3.35) and (3.36). The behaviour of T »(in, Q?), for n —
00, is therefore expected to be governed by the behaviour

of M, 2(2°, ), for small |r| and large z°

4 Effective Hamiltonians and Lagrangians

In this section we shall express the matrix elements M,
(3.5) as functional integrals with effective Lagrangians
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containing 7 (3.15) as parameter. The procedure is anal-
ogous to the one of [23] but the vector nature of the elec-
tromagnetic current causes some complications. We work
in this section with the Lagrangian of QCD in a general
covariant gauge. The case of the temporal gauge is treated
in Appendix C.

4.1 Matrix elements in Minkowski and Euclidean space

We start here with the following matrix elements in the

nucleon rest frame, supposing always 2% = 2°(1 —r),2° >
0:
— 1 ,
My () = 2 S (NG (~¢)
spins
x Ju(a’es, 2")J, (0)|N (p)), (4.1)
—~ 1
M, (2°,r) = 3 Z<N(P)|J0(T/3e3,xo)J0(0)|N(p)>' (4.2)
spins
The relation of./\/l »(2%,7) and /\/l1 5(2%,7) (3.16) is given
in Appendix A. From translational invariance we have
J(z%e3,2%) = exp(izH,)J,(0) exp(—iz®H,),  (4.3)
where
H,=P°—(1-r)P>, (4.4)

and P°, P? are the energy and third component of the mo-
mentum operator. Note that H, is positive semidefinite,
for 0 < r < 2. From (4.3) we get

Mz (@) = 3 3 ING)(=9™)

X exp(ia”Hy )0, (0) exp(—ia H )L 0N @), (45
My (00,1) = 3 3 NG exp(ia )

x Jo(0) exp(—iz® H,)Jo(0)| N (p)). (4.6)

We see that in the effective theory ./T/l/; ,(2°,7) are correla-
tion functions of two currents at purely timelike separation
0
xv.
We will now keep r fixed with 0 < r < 2 where
H, is positive semidefinite. This allows us to continue
M (2%, r) analytically into the lower half z°-plane and

in particular to 2° = —iXy, with X, > 0:

My (-iXa) = 5 S NG (~0)

spins

x exp (X4 H,) J,(0) exp (—X4H,) J,(0)|[N(p)), (4.7)
M (-iX0,1) = 3 S (N exp (XsHy) Jo(0)
x exp (= X4H1,) Jo(O) [N (p). (4.9

The matrix elements (4.7) and (4.8) are correlation func-
tions of two currents at purely timelike distance X, in a
Euclidean field theory with H, as Euclidean Hamiltonian.
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In the following we shall write the matrix elements
(4.5) and (4.6) as path integrals in an effective, r-depen-
dent, Minkoswkian theory and (4.7) and (4.8) in an effec-
tive Euclidean theory.

4.2 Effective Lagrangian and path integral
in Minkowski space

We start with the Lagrangian of QCD in a general covari-
ant gauge

1
£=-tgo, Gor - =3

4
+Z( "Du— )q

(0" 6°)(8,0") — g une(96") Gl

Here ¢ denotes the quark fields, ¢® the Fadeev—Popov
fields, GJ; the gluon potentials and G, the gluon field
strength tensor,

Ho"Gy)(07GY)

(4.9)

G, = 0,Gy — 0,G% — gfarcGLGS.
The coupling constant is g, the quark masses are m,, and

D, is the covariant derivative

(4.10)

D,g= (5‘u + ingL;)\a> q. (4.11)
All quantities in (4.9) are the unrenormalised ones.

It is now a straightforward exercise to derive from (4.9)
the canonical momenta II, the Hamiltonian density, the
Hamiltonian P°, the third component of the momentum
P3 and the effective Hamiltonian H,. (4.4). The details are
given in Appendix B. Here we list the result:

H, = / A3z,

1 )
Hr - *igﬂcaoﬂgao — HGao(ﬁjG‘” -

(4.12)
(1 —1r)93G0)
1 a0 b0 ~cj
+ iﬂcwﬂcw + 1 gai (—0;G™ + g fapc GGV
aj 1 a aj
+ (1= 1)0GY) + GH.G gk
+ zq:q <—2’YJ 0j +§’YO(1 —r) 03

+ gW“GZ%)\a + mq> q

+ Hya Il 5o + e (g fareGP0° +
+ (1 —7)(050")
+ 9fabe(0;0°)GY 6°.

Here and in the following Latin indices j, k, ... run from 1
to 3. From the effective Hamiltonian density (4.13) we get
in the standard way the effective Lagrangian density:

(1 —7)039%)
+(9;9)9;0°
(4.13)
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L, = _ZGZVGMW o (1

1 . )
+ 5(1 - ’I“) (83G‘”)83G‘”

r)G% 9, G

1 —1 ap
26 (0,6 —
— (1 =7)93G"Y)
1 Axd
+ZQ(2'YH Du, _mq (1—T>2 083)
q

(1 —1)03G*)(9,G™

F(0"6)0,0" — 9fanel0,67)GM6°

— (1= 1) (@06°)3" + §0u0")

+ (1= 7) (936%) g fapc G™°

(1= 1) (056%) B30 (4.14)

Here and in the following we use the term “effective”
for the r-dependent theory. We emphasise that our proce-
dure does not imply approximations like integrating out
some modes etc. The r-dependent theory is as good as the
original one for the calculation of our matrix elements and
we hope that it will be more effective for the study of the
small xp; limit of the structure functions.

__ We can now give the path integral representation of
M, (2, 7) of (4.5) and (4.6) in the effective theory de-
scribed by (4.14). The procedure is analogous to the one
described in detail in [23]. Let ¢ (z) be an interpolating
field operator for the nucleon with normalisation such that

(O[n (2)|N(p, ) = e Prus(p) (s ==£1/2). (4.15)
According to the LSZ formalism [30] we define
A = [ Eanperlon(@).  (110)
0=t
In the sense of the weak limit we have
Jlim A (p.1) = AV (p),
out
Jim Ay (p, 1) = A2 (p), (4.17)

where A"(p) and AS%*(p) are the annihilation operators
for incoming and outgoing nucleons. In the standard way
we obtain now for the matrix elements

My (2% r) = lim exp[iM(t; —t;)]

t;——o0
ffAH»oo

<27 [DGaaoden]i [doe, )]
x fZas (p,t5)(=9")5u(0,2°)5, (0)al (p, 1),

_ /D(G’q@ &, ) exp {i/d‘lxﬁr(ﬂc)} ;

M;(xo, r)= . Emoo exp[iM (t; —t;)]
thH»oo

(4.18)

(4.19)
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X Z~ /D (G,q,q, ¢, ) exp [i/d‘lxﬁr(x)]

x5 Z as(p,t5)jo(0,2°)jo(0)al (p, t:). (4.20)

Here p is always the nucleon momentum in the rest sys-
tem (see (2.18)) and as,al, j, are obtained by replacing
in A, Al Ju, the quark field operators by the correspond-
ing Grassmann variables. Of course, also in L, (z) quark,
ghost and gluon field operators have to be replaced by
Grassmann variables and classical gluon fields, respec-
tively. With (4.18)—(4.20) we have the path integral repre-
sentation of the matrix elements M_, as timelike correla-
tion functions of the currents in the effective, r-dependent
Minkowskian theory.

4.3 Effective Lagrangian and path integral
in Euclidean space

Here we derive the path integral representation for the
matrix elements (4.7) and (4.8) in the Euclidean effective
theory. Points in Euclidean space are denoted by X =
(X, X4). Our Euclidean y-matrices are

We perform now a rotation to Euclidean space starting
from the effective Hamiltonian (4.12) and (4.13). The de-
tails are given in Appendix D. The result for the effective
Lagrangian density in Euclidean space is

1 . o
= 55_1[5uG‘aEu +i(1 = 1r)05G4]
x [0,Gg, +1(1 — 1)03G%,]

1 : a a : a
+ 5[ fa; T1(1 = 1)03GE,][GRyy +1(1 — 7)03Gg,]
1
+ *GaE'kGank
<>
+ ZQE ( YEu BM += 'YE4(1 —71) O3
+ ig’yE“G’%Mﬁ)\a + mq) qr
+ (Oadfs + (1 = 1)30%)(010% — 9 fabe Gradi
+1(1 —r)ds¢)
+ (0;¢%)0; 08 — gfabc(ajéb%)Glﬁjﬁbﬁ (4.22)

For the following it is convenient to split Lg , into the
quadratic and the interaction term:

Li, = L)+ L1, (4.23)
1
Ly = 5€ 10,0, +1(1 —)2s08,]

X [0,Gg,, +1(1 — 7)03GR4]
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1
+ 5[64 an - GJ»G“E4 + i(l — T)83Gan]
X [84G%j — 8jGaE4 + l(]. — ’I")agGan]

1
+ 710G — 3kG“Ej][3jGaEk — OLGg;]

+ ZQE [ Teu O+ 7E4(1 1) 93 +mq} e

(5'4¢E +i(1 = r)d308) (0a0f + (1 — r)D30f)

+ (9;68)(9;08), (424)
LES = —gfurc[01Gy — ;G +i(1 - 1)3sG)
1
X GL]ZMG%j - igfabc(ajG%k - akGan)G%j Ek

1
+ Zg2fabcfab’c’Gl]Z]# G c
+ig» qE’YE,uGaEﬂi)\aQE (4.25)

— gfabel( uﬁbE)GEM +i(1 = r)(930%) Gyl -

With the same procedure as in [23] we get the follow-
ing path integral representation for the matrix elements

MG, (=iXy,7) of (4.7) and (4.8):

./T/l/;(—iX4,r) = %Z lim exp[(ry —7;)M]

T, —>—00,
S Tf%«i»oo

X ZE_I/D(GE7QE,QE,¢E,¢3E)

X as,E(pa Tf)(il)]Ell(O’ X4).7E#(O)ai(pa Ti)

x exp(—Sg,r), (4.26)
My (<iXs,r) = 3 32 lim_expl(ry — )M
s tpoe
X ZE_I/D(GE7QE,§E,¢E,<ZBE)
X as1(p,77)iE,4(0, Xa)jua(0)al (p, )
x exp(—Sg,r)- (4.27)

Here
ZE - /D(GanE7qE7¢E7éE) eXp(_SE,T); (428)

Sg, = /d4X£E,T(X), (4.29)
GE, ..., ¢r are the integration variables, JEu Tepresent the
components of the electromagnetic current and as, al the
nucleon state; see Appendix D.

From (4.23)—(4.25) we see that the Euclidean, r-depen-
dent action Sg, has, in general, imaginary parts. To dis-
cuss the formal convergence properties of the integrals
over the gluon-potential variables we split Sg, into the
quadratic and interaction parts

Se.r = Sy) + SHL, (4.30)
Syl = / dixcy) (4.31)
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Int / d4XEInt (432)

After some partial integrations we get

1 _
S(E(?« - / d4X{2 B 0ab[ =0, 020x + (1 = €71)8,0,
— 21(1 — T)(SMV8384
+ (1= ) (1 — € )(5,40005 + 6,40,,03)
+ (1= 7)20,,0303 — (1 — 7)%(1 — €71)0,40,40303]GE 1
+ Z Je[Ven0y +1(1 — r)yRa0s + mylgr (4.33)
q

+ égéab(—a,\@ — 21(1 — T)8384 + (1 — r)28383)¢%}.

It is particularly convenient to use the Feynman—"t Hooft
gauge, that is to set £ =1 in the following. With this we
find

1 .
SO ey = /d4X{2 4 SabOpn [ — 9\0 — 2i(1 — 1)030,

. r)2a353] Gb,

+ Z qe[veuOu +1(1 — 7)YR403 + Mmglqr
q

+ q_SaEdab [ — 8)\8)\ — 21(]. — T)63(94

+ (1 - 7")23383} ¢%}- (4.34)
With the Fourier transformations
00 = [ e G (),
(G ()" = Gy (-K),
0 (X) = [ Gz (),
51 = [ SR
Pp(X) = / g;f;eiKXZEZ(K), (4.35)

we get

(0) d*K |1 ~u N
rle=1 = /(%)4{2( Fo () “0ab0ypun
x [K? +2i(1 — r)KsKy — (1 —1)2K2])G

+ZQE

fow ()

Jive Ky — (1 = 1) yea K3 + mylde(K)

67 (K8 [ K2 4 2(1 = 1) K3 K

. r)QK:,ﬂ q?b(K)}. (4.36)
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Note that
K? +2i(1 —r)K3K, — (1 —7)*K3 (4.37)
=K} + K3 +r(2—7)K2+ K3+ 2i(1 —r)K3K,

has a positive real part, for 0 < r < 2 and K # 0.

We discuss now the formal convergence properties of
the gluonic integrations in (4.26)—(4.28), setting & = 1.
Consider a given gluon potential Gf,(X) together with
)\GEH( ), for all A > 0, to investigate how the integrand
in the functional integral behaves for large potentials. Sup-
pose first that

FabeGey (X)Gy (X) 2 0. (4.38)

Then the term in £ (4.25) quartic in the gluon poten-
tials ensures

exp[—Sg,(AG) e ™, for A—o0,  (4.39)
with ¢; > 0. On the other hand, if
fabe Gy, (X) G, (X) =0, (4.40)

for all X, the positivity of the real part of the quadratic
term of the action (4.36) ensures that

exp[—Sg.r(AG)|e—1] o e, (4.41)

with ¢o > 0. Thus in any case the integrand of the func-
tional integrals (4.26)—(4.28) is damped exponentially, for
large gluon potentials. This should make the integrals well
behaved after introducing some regularisation procedure,
for instance a lattice regularisation.

for A — oo,

4.4 Propagators in Euclidean space
and perturbation expansion

In this section we discuss first the lowest-order propaga-
tors in Euclidean space for the gauge choice £ = 1. The
basic Green’s function Ag(X,m?,r) for mass m in the
r-dependent theory is defined through

[*a)\a)\ - 21(1 - T)8364 + (1 - T’)28383 + mz]
x Ap(X,m? r) = §*(X).
The solution of (4.42) as given in [23] is

d*K
AE(X,mQ,T)—/(Q?T)4

(4.42)

KX (KT A K +m?)~

_ 4 2(XTA lx) 1/2
x Ky (m(XTATIX)1/?), (4.43)

where K is the modified Bessel function of order 1 and

10 0 0
01 0 0

A, = 7 4.44
00r(2—r)i(l—r) ( )
00i(1—r) 1
10 0 0
01 0 0

ATl = 4.4
r 00 1 —i(l—r) (4.45)

00-i(l—7r) r(2—1)
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For m? = 0 we get

1
Ag(X,0,r) = yes (XTA1x)™!
T
1
= I — (X7 + X5+ X5 +r(2—r)X]
— 21(1 — T)X3X4)7 (446)

From (4.34) now we easily get the expressions for the
propagators in lowest order. The gluon propagator is

A©ab

By (X7) = 0ab0, Ap(X,0,7), (4.47)

the quark propagator is

S, mg, 1) = [~ Ym0 — i(1 = 7)78405 + ]
x Ag(X,m?,r), (4.48)
and the ghost propagator is
AP (X, 1) = SapA(X,0,7). (4.49)

All these propagators of (4.43), (4.47)—(4.49) have the
property that, for r — 0, they fall off more and more
slowly in the X, direction, whereas their fall-off in the
X1, X5 and X3 directions is independent of r. For the case
m # 0 this is discussed in Sect.5 of [23]. For the propa-
gator of a quark of mass m, the correlation length in the
directions X;(j =1,2,3) is

) _
Iy =mgt, (4.50)
and in the direction Xy :
1 = [m2r(2 — )]V
~ 10(2r)"12, for r — 0. (4.51)

For the massless case (4.46) there is of course no genuine
correlation length, but for r — 0, the fall-off in the X4
direction is again slower by a factor (2r)~'/? compared to
the X o 3 directions.

We can now use the propagators (4.47)—(4.49) to con-
struct the unrenormalised perturbation series for the
Green’s functions in the theory described by Lg , (4.22).
Since the Fourier transforms of the propagators (4.43),
(4.47)—(4.49) have no unwanted poles in momentum space,
the convergence properties of Feynman integrals should be
the same, for arbitrary r, as for the standard case r = 1.
Thus we conclude that also the construction of the renor-
malised perturbation series should work for the Lg , the-
ory as for the standard case. Of course, the purpose of our
paper is not to advocate perturbative calculations starting
with the Lagrangian density Lg,, of (4.23) but to provide
a framework for non-perturbative calculations.

5 Phenomenological applications

In this section we study the naive parton model from our
point of view and make some speculations concerning a
possible critical behaviour of the full theory with interac-
tion, for r — 0.



O. Nachtmann: Effective field theory approach to structure functions at small xg;

5.1 The naive parton model

The central assumption of the naive parton model is that
of free field or canonical behaviour of the product of cur-
rents near the lightcone. In detail one assumes [29] for
M 2 of (3.5)
472

%) ~ h1($P)TA+(fU=m2)

~ hy(xp)(—x? +ie(xp))~?, (5.1)

o 1
Moy (zp, 22) ~ —hg($p)8ﬂ'2/ dsd’(s — mz)YA+(a:,s)
0

Ml(mpa

1
~ §h2(a:p) In[m?(—z? + ie(zp))], (5.2)
where ~ indicates that only the leading term for 22 — 0
is considered and AT is defined in (3.20). The parameter
m represents a hadronic mass scale. Its precise value does

not matter except that we will assume

0<m < M. (5.3)
According to the DGS representations (3.22) and (3.23)
the functions hi o(xp) can be represented as

i (2p) / dCleos(Cpz) — 1) () + b, (5.4)

1 ~
ha(ap) = / a¢ cos(Cpr)ha(C), (5.5)
-1
where
hi(¢) = hi(—¢) = h3(Q) (j=1,2),
WO = (9% = const. (5.6)

It is now an easy exercise to calculate the structure
functions Wi o inserting the parton model ansatz (5.1)—
(5.6) into (3.8) and (3.9). The result, expressed in terms
of Fpy, of (2.8), is

Fy(xgj, Q%) = vWa(v, Q) ~ 21%wpihl(vg;),
FL(ZEBja Qz) ~ 47T2:E2th1 (:L'Bj)7

(5.7)

where now ~ indicates the leading term, for Q% — oc.
Of course, we get Bjorken scaling. From the well-known
relations of the parton model we get the physical interpre-
tation of the functions h; and hg as

:ZezN —I—ZeQN
=( Z”2N

0<C§1,

2#25'
47T2h1

(5.9)

where e, N;(C) are the charges and distribution functions

for the spin 1/2 partons and €;, N;(¢) for the spin 0 par-
tons.
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Using an approximate parton model description, we
conclude from experiment [1-3] and the fits in [22] that
the growth of I, for xp; — 0, is at most as

Fy(xgj, Q%) o« (zg)) "%, (5.10)

with 0 < a < 1. This implies from (5.7) that at most

hy(C) o ¢~ 7,
ha(¢) o< [¢]7%,

for ¢ — 0. The structure function F7, is not well measured
at high Q2. All indications are that FY, is small compared
to Fy. Thus a conservative estimate is that also F1, grows
at most as

(5.11)

FL(JIBJ',Q2> X (xBj)_a, (5.12)
for zg; — 0. From (5.8) this implies that at most
hn(¢) o< [¢]77, (5.13)

for ¢ — 0. We see that with (5.11) and (5.13) the integrals
(5.5) and (5.4) are perfectly convergent, for ¢ = 0. On the
other hand, an unsubtracted integral as for hs would not
be convergent, for hy. These findings are our motivation to
write the DGS representations (3.22) without, and (3.23)
with subtractions.

The purpose of our discussion of the parton model is
to see how one obtains in this case a relation between
the behaviour of the structure functions at large v, that
is small xg;, of the amplitudes T4 o of (3.35) and (3.36)
at large 7, that is large imaginary v, and of the matrix

clements M, 2 (3.28) and Ma , (4.1), (4.2) at small r. For

illustration we consider only W5, T5 and J\Zg and make the
following simple ansatz:

- 1.
2m%hs(C) = —A-(I¢] " = (1 - <), (5.14)
with
0<a<l, b>1, A>0. (5.15)
We get then, for 0 < ¢ <1,
B b Cu ~
22 h5(Q) = A 1= C+ —C(1 =) 1= Q!
~ AC7 for small ¢ (5.16)
and from (5.7), for small g;,
FQ(I‘BJ', Q2) ~ A(]}Bj)_a, (517)
which implies, for large v at fixed Q?,
A (2Mv\“
2
Wa (v, Q%) ~ V( 0 ) : (5.18)
A [2Mv\“°
o1, Q) @) ~ ity (P7) - 519

On the other hand, we have argued at the end of Sect. 3
that the behaviour of Ty(in, Q?), for n — oo, should be
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governed by the behaviour of Ms (2%, ) of (3.28), for small
|7| and large 2°. With the ansatz (5.2) we get

Mvg(xo,r) ~ %hg(xoM) In(—r), (5.20)

for small |r|, where from (5.5) and (5.14):

ha(2°M) = —/dccoschch (1 - 0.

(5.21)

To see the large 2° behaviour of hy(z°M), we write it as

follows:
ho(2OM) = _ia /OO d¢ cos(Ca®M)¢~%e¢
0
- Téa h dc¢ cos(¢x" M) (5.22)
< [(CTT=1A =001 - = e,

The second integral on the r.h.s. of (5.22) vanishes faster
than 1/2°, for 2° — oo, as we find from a simple applica-
tion of the Riemann—Lebesgue lemma. The first integral
then gives the leading behaviour, for large x°,

ha(z% M) ~ —Wéf(l —a)sm(g ) (M)t

(5.23)

Inserting (5.20) and (5.23) into (3.36) gives, for large 7,

iM 2 AMa—t . (T
Ty (in, Q?) ~ Q — ——1I'(1 —a)sin <§a>
/ drln(— / da®(2°) 1 exp(—a° /z(n, 7))
IMQQ a—1 1 m
27]3+a T2 aM F(2 + a)F(l B a) s (ga)

/ drln(—

r)(r+7)"2 e

0 -11 /Q*\ "
~ A (cos (5(1)) p (277M> (5.24)
With analytic continuation we find, for large |v|,
2 ™ -1
To(v,Q%) ~ A (cos (Qa)) (5.25)

X [sin (ga) +icos (g“)} % <2c]\2;y>_“

and, for large real v,

Wa(v, Q) = ImTa(v + i€, Q%) ~ A (QM”> . (5.26)

Q2

Of course, this is in perfect agreement with (5.18).
We have thus seen in this simple example that the
power behaviour (5.17) of Fy corresponds to a behaviour
Mo (2, 7)

(z°M)* 1t In(—r), (5.27)
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(see (5.20) and (5.23)). If we

assume that M (2%, 7) has a similar behaviour, as is for
instance true for vanishing oy, (see (3.11)), we get from
(5.27) and (A.1), (A.2) for the current correlation func-
tions (4.7) and (4.8):

for small |r| and large z°

My (—iXa,r) o (—iXaM)* (=)™, (5.28)

for small |r| and large Xy.

5.2 Regge behaviour

We have seen in Sect. 4.4 that the free propagators in the
r-dependent Euclidean theory develop in the X, direction
a large correlation length o 1/r1/2, for r — 0. Let us
assume here that this property remains true in the full
theory with interaction. In [23] it has been argued that
one could then expect to see a critical behaviour of the
theory, for r — 0, with r playing the role of the deviation
of the temperature from the critical one, in the statistical
physics of a system near a second-order phase transition
at T¢,

re~ (T-T,)/T.. (5.29)
We can then expect to see a simple power behaviour of the
correlation functions in the X, direction, for » — 0, from
general scaling and renormalisation group arguments. In
[23] various possibilities for the behaviour of the correla-
tion length in the X, direction are discussed.

Let us assume here, as an example, that the r-depen-
dent theory of Sect. 4.3 has a correlation length in the X4
direction similar to (4.51):

Ly(r) ~ m™ Y (—=r)"Y/2, (5.30)
for r — 0, where m is a hadronic mass scale. We assume,
furthermore, a simple power behaviour of the correlation
functions (4.7) and (4.8):

Mv;b(—iX4,T) o
0<a<l,

(—iX4 M) 3 (—r
|€0| < 17

)=2-(/De0,
(5.31)

for r — 0 and m™! <« X, < [l4(r)]. The ansatz (5.31)
corresponds to (see (A.1) and (A.2))
)7(1/2)50’

Mo(20, 1) ~ A'(2°M)* (—r

A" = const., (5.32)
for r — 0 and m~! < 2% < |l4(r)|. What are the conse-
quences of (5.32) for Ty (in, Q?) of (3.36) and the structure
function F»(zgj, Q%) of (2.8)7 We have argued at the end
of Sect. 3.3 that the relevant region of the r integration in
(3.36) is for r ~ —7/2. Consider now the z° integral in
(3.36) for this value of r. We have on the one hand the ex-
ponential damping factor exp(—xz"/Z(n,r)); on the other

hand, the matrix element My(2% ) provides as cut-off
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the correlation length l4(r). For r = —7/2 we get from
(3.34) and (5.30), for n > Q,

~ L (5.33)

(5.34)

Thus, for n > Q > m, the 20 integration in (3.36) is
effectively cut off at 20 = Z(n, —7/2) and the 2° integral
in (3.36) will get its leading contribution from the scaling

regime of M (2%, 7); see (5.32). Inserting (5.32) in (3.36)
we get, for n > Q > m,

ey iMQ? o
Tain. %) ~ L [ ar [ art@t)
x exp(—a®/z(n, 7)) A (2O M)* 1 (—p)~ (/20
3+a
Ni% (1\774) re+ad

></dr(—r)_(l/g)e"(r—i—F)_Q_“
c

1
F<1+a+so>
S 2
M I 15

50

Q2 _a_(1/2)50 ,'7 —1+a+50
CIVE (M) '

The analytic continuation, for arbitrary large |v|, is ob-
tained by the replacement in (5.35):

(5.35)

1
7 — vexp (—i27T> . (5.36)
For real positive v this leads to
VW2(Z/5 Q2) = FQ(xB_]a Qz)
1 1 !
~ 47 A'T <1 +a+ 250) (F (25())) (5.37)

T 2\ (1/2)e0
X sin [g(l—a—eo)] (QMQ) (zg;) .

This is an interesting result. The simple scaling as-
sumption for the matrix element Mo (5.32) as suggested

591

by the analogy to critical phenomena leads to the be-
haviour for the structure function F3 found in the Regge
fit (see (2) and (4a) of [22]), for large @? and small zg;,

Q2
o]

Here Xo, Q2,¢o are constants with

(1/2)e0
FQ(xBja QZ) ~ XO(Q%)H—EO ( > (xBj)_EO. (538)

€0 ~ 0.44, (5.39)
where 1+ ¢ is the intercept of the hard pomeron. Setting
a =0 in (5.37) we get indeed the powers of Q2 and zp; of
(5.38). Comparing (5.28) and (5.31) we see that (1/2)eg
can be interpreted as the anomalous part of a critical index
in the language of statistical physics.

6 Conclusions

In this article we have developed an approach for the the-
oretical description of the structure functions at small zp;
which should allow truly non-perturbative calculations for
all Q% > 0 to be made. Of course, one can also perform
perturbative calculations in this framework. We have in-
troduced an effective, r-dependent theory (see Sect.4) in
Minkowski and Euclidean space, starting from QCD in
Feynman—"t Hooft gauge. We have argued that the small
xpj behaviour of the structure functions is related to the
small r behaviour of the effective theory and that the limit
r — 0 corresponds to a critical point. In the vicinity of this
critical point we can expect to see power behaviour of the

relevant matrix elements My o(2°,7) (3.28) with certain
critical indices. We have shown that this leads to Regge
behaviour of the structure functions at small xp; and large
Q?, as observed in the phenomenological fits of [22]. In this
way the intercept of the hard pomeron is related to a crit-
ical index of the r-dependent theory. We emphasise that
in principle both the hard and the soft pomeron contri-
butions to the structure functions should be calculable in
our approach.

The idea that the small xp; behaviour of the structure
functions may be related to some kind of critical behaviour
has been suggested by various authors. Our present article
follows the ideas presented in [23]. The critical point of our
effective theory for r — 0, if it is indeed confirmed, would
be completely analogous to a point of a second-order phase
transition in statistical physics. Quite a different type of
critical behaviour, self-organised criticality, was suggested
for the small xg; behaviour of the structure functions in
[31]. Criticality of the photon wave function in connection
with a dipole model was suggested in [15]. It is also inter-
esting to note that perturbative calculations in the lead-
ing logarithmic approximation, that is in the framework of
the BFKL equation [10], lead to conformal invariant struc-
tures for the amplitudes [32, 33]. One can suspect that this
conformal invariance could have its origin in some sort of
critical behaviour of an effective theory.

Coming back to our present article we have presented
here also our results on some more technical issues.
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We have discussed various ways of analytic continu-
ation of the Compton amplitude in the v- and r-planes.
We found the representations (3.29)—(3.36) the most use-
ful ones. The r-dependent theory in Euclidean space was
studied in particular in the Feynman—"t Hooft gauge. The
final goal of our approach is to make a truly non-perturba-
tive calculation of the matrix elements (4.26) and (4.27)
in the r-dependent Euclidean theory. This could be based
for instance on exact renormalisation group methods (see
[34,35] for a review) or on lattice methods. Certainly, it
will not be an easy task, since our Euclidean action (4.29)
has an imaginary part, for r # 1. But suppose that one
can indeed study in this way the theory first for real r
with 0 < r < 2, deduce critical behaviour, for small r, and
establish scaling relations as in (5.31). Making then the
analytic continuation in r and putting everything into the
theoretical machinery developed in this paper would mean
a calculation of the small zp; and large @ behaviour of
the structure functions. Both the functional dependences
and the absolute normalisation of the structure functions
could be obtained in this way. Of course, much remains to
be done.
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Appendix

A Relation of ./(/tv;,b and ﬂl_,z

From the definitions (3.16) and (4.1), (4.2) and using (3.5)
we get after some straightforward but lengthy algebra:

N 92 6(1—r) 02
— /0 _ ) _
Mo @) = { 3(8x0)2 z0  9x00r

) s~ ey e} F 6
-

322(02)2—(1’“)_ T)22M2§T} M; (2°,r), (A.1)
M (a0, 7) = —(2°) 2 38722 1:;}
x M7 (2, 7) + M? M3 (a°,7)} (A.2)

B Effective Lagrangian density
in covariant gauges

Here we give the details of the derivation of L,.(z) of
(4.14). From the original Lagrangian £ (4.9) we get the
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canonical momenta in the standard way. It is convenient
to write first £ separating time and space components of
the fields. We have

1,. . )
L= (G +0,G = gfarcG"G)
% (Gaj +ajGa0 _gfab’c’Gb,OGC/j)
1 a aj 1 ~Ya aj ~a a
- 1GiG ik _ 275(0 0+ 9;G") (G + 0,G*)
_i 0 - o '_i 0
+ Zq:{qﬂ q— 57"
(1 iy K aa
+a(57 9 -9y Gug—mq q

+ $od* — (9;6%)0;0"

— 9fancd 8°GP0° + (9;6")GY ). (B.1)
We now easily get
oL 1 a0 aj
oo = 3¢ —E(G +9;GY), (B.2)
Hoei = 8.75 =GY +0,G° — gfupc GG, (B.3)
aGaj J abc ’
oL i
I, ===~
q a4 QQV )
oL i
H— = - = = 0 4
A (B.4)
oL -
HQS“ = — = (ba’
toloxd
oL .
H&“ =—=9¢"- gfachbO¢c' (B.5)
Op?

Solving (B.2), (B.3) and (B.5) for the time derivatives of
the fields, we get

G = —¢lgao — 9;,GY,
G = M ga; — ;G + gfapc GG,
qga = H¢a,

¢ = o + g fapeG 0" (B.6)
The Hamiltonian density is
H = MG + Hgu G+ (44 + §1T;)
q
+ e + ¢ 1150 — L, (B.7)

or written out explicitly:
1 )
H = —ié-HGaOHGaO - HGa(JajGaJ
1 1 a ajk
+ §HGajHGaj + ZG]ICG
+ HGGJ (_ajGao + gfachboGCj)

i ;e Aa
+> {q (—273 9; 97" GL— + mq) q}
q
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+ Hye I 5o + Hag fare G0
+ (0;0)0;0" + gfabe(0;0")G% .

The 03 component of the canonical energy-momentum
tensor is

(B.8)

Tos = Hao03GP + ITga; 03GY
+ angq + (agc])ﬂq

+ e 030" + (030%) 115 (B.9)
We have, furthermore,
P3 = /d%?ﬂf‘ = —/013:5703 (B.10)
and from the definitions (4.4) and (4.12)
H.=P°—(1-r)P?
- /d%{% + (- )Tos)
= /dgaz?{r. (B.11)
Thus, we get
Hr =H+ (1 —7)Tos. (B.12)

Inserting here (B.8) and (B.9) leads to (4.13).

To prove that H, of (4.13) is the Hamiltonian density
to the Lagrangian L, () of (4.14) we proceed again in the
standard way. We first write down L, (x) separating time
and space components of the fields:

L, =

1 . . . )
E(G‘” + 0;G° — gfape GG — (1 —1)03GY)

% (G«aj + 6]‘Gao _ gfab/c/GblOGc,j .
1 a aj
- ;GG Jk

(1 —17)03GY)

L pa0 g pai
2£(G +0,G
X (G 4 9,G* — (1 — r)83G™)

_i 0 - o '_i 0
+ Z{q27 ¢ — 57"

“ A
—(1—=r)5 70 03 —97" G5 = mq) q}

dja (1 )83¢ )(¢ - gfachbOQbC

(1 —7)93G)

- 8]q3a) 0j9" — 9 fabe( ]¢ )Gb]¢ (B.13)
From (B.13) we find the new canonical momenta to be
oL,
HGQO - 8Ga0
1 . .
= _E(Gao +0;,GY — (1 —1)05G™), (B.14)
e oL,

T 9Ga

593
= G 4 0;G* — gfapeG* GV
— (1=7)5G%Y, (B.15)
L, _ - -
H a = ]. —Tr 3 a,
"= g =" — (1-7)030
OL,

= (Z.Sa - gfachbO¢C -

. = (1—7)93¢" (B.16)

dge
and IT,, II; staying as in (B.4).
Solving (B.14), (B.15) and (B.16) for the time deriva-
tives of the fields, we get
GCLO = —fﬂgao — 6jGaj + (1 — 7“)83Ga0,
G = Mga; — ;G + g fap GG

+ (1 —1)03G, (B.17)
60 = Mya + (1 — 1)350°,
0" = Izo + gfarcG™¢° + (1 —7)030".  (B.18)

With this we find that #, of (4.13) is precisely given as
Hy = MG + oy G

+Z WG+ Glly) + My, 0" + ¢ g0 — L, (B.19)

C Effective Lagrangian density
in the temporal gauge

Here we give the r-dependent Lagrangian and Hamilto-
nian densities in the temporal gauge. We start from the
standard Lagrangian of QCD and add a total divergence
term (see Appendix E of [25]). We can write

. 1 .
L= *ZGipGMP + Zq(wADx —mg)q

q

+ O {;(Ga/\apGap _ GapapGaA) —

1
Dy =0\+ igGiiAa (C.1)
With the gauge condition
Gi(x)=0 (a=1,...,8), (C.2)
we get
-1 1 .
L= QG‘” GY — (a G*)0;G™* + 5(ajGaﬂ)akGa’“
— g fabeGY Gb’fajadc
1 , )
- ZngabcfarsGbJGCkGerSk
+ Z {q 74 (C.3)

i (1% iaida
—q§7q+q 57 dj —mq+ 97’ G > e
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The canonical momenta are

oL i
H aj — n = @J
T T
and II,, II; as in (B.4). This leads to the following Hamil-
tonian density and 03 component of the canonical energy-
momentum tensor:

(C.4)

1
H = §HGaj I Ga;
1 . ) 1 .
+ S OG)RG — S (0,6
+ gfachaijkajGCk
1 . )
+ Zg2fabcfasthJGCst]Gtk

i < . g
+ {q (—Q’W 9j +mq — gW]G‘”Q) q} , (C5)
q

. i “
Toz = I ga; 3G + Z {(7;70 03 (J} . (C.6)
q

With this we get for the r-dependent Hamiltonian density

HTZH+(1—T)763

} _
Hg_o) = incajHGaj + (1 - T)HG”jﬁsGaj
1 1 j
+ 5(0,G")9;G™ = 5(8;G) G (C8)

B i . < i <>
+ qu {q (—zvﬂ 0; +(1=7)57" 93 +mq) q} )
HInt — gfabCGaijkachk =+ EQQfabcfasthjGCstJGtk
A
-3 {qgv’G ]2q} :
q

In the standard way we find from (C.8) and (C.9) the
r-dependent Lagrangian density

(C.9)

L, =L+, (C.10)
£ = 2(G — (1= 1)G)(E — (1 - 1)G™)

1 . ) 1 .
_ 5(8kGa])8kGaJ + §(ajGa])akGak
(i © i ©
+>. {q (QWA oxr—(1- 7’)570 ds3 —mq) Q},
q

(C.12)

(C.11)

EInt _ _Hlnt

We also find with £ from (C.3).
L,=L—-(1-7r)GY0GY + 5(1 —1)2(03G) 093G

=Y {ay? Gaef

q

(C.13)
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D Euclidean Lagrangian density
in covariant gauges

Let H, be as in (4.12); to be precise, we set 20 = 0:

H, = /dBIHT(x)|w0:0. (D.1)
We define the Euclidean field operators with
V(Xy) = exp(X4H,) (D.2)
as follows:
B (X) = V(X)) G (2)V (= Xa),
fa(X) = =iV (Xy) G (2)V (- Xy),
ge(X) = V(X4)q(z)V (=Xy),
Ie(X) = V(X4)q(z)V(—Xa),
PE(X) = V(X4)o"(2)V(=Xa),
PE(X) = V(X4)o"(2)V (—Xa),
Hey (X) = =V(X4)Hgas (2)V (= Xa),
Heg, (X) = 1V(Xa)geo (z)V(—Xa),
g (X) = V(Xa) e (2)V (= Xa),
M3y (X) = VX) T @)V (-X2). (D)

Here G% (z) etc. on the r.h.s. of (D.3) are the Minkowskian
field operators at the point

T = (X,O), (D4)

and X = (X, Xy).

Defining the Euclidean electromagnetic current opera-
tor as

Jeu(X) =Y {Qqn(X)veuae(X)}, (D.5)

where @, are the quark charges, we get with x as in (D.4)

Jea(X) = V(X4) I (2)V (- Xy),

Joy(X) = —IV(X) P @)V(-X)).  (D.6)

The nucleon field operators in the Euclidean theory are
obtained from (4.16):

AES (p7 T) = V(T)A-S (p7 O)V(_T)?

Al (p,7) = V()AL (p, 0)V (=7) (s:i;>, (D.7)

where we always take p (2.18) for a nucleon at rest. We
have

dim AL, (p,7) | 0) exp(—=Mr) = | N(p,s)),
1im (0 | Aps(p, 7) exp(MT) = (N(p,s) | -
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In the standard way we get now for the matrix ele-
ments M, (—iX4,7) defined in (4.7) and (4.8), for Xy >
0,

My (=iXa,r) = 3 SN, 5) | (1)

S

X JE#(O,XZL)JEH(O,O) | N(p, S))

1 .
=5 Z nlirgoo exp((1f — 1) M|

S rf—r+oo
X (0| As(p, 74)(—1) i (0, X4) J5, (0,0) AL (p, 73) | 0).

Mb_(—iX4, ’I“)

= %Z(N(p, s) | Jra(0, X4)Jr4(0,0) | N(p,s))

(D.9)

%Z i expl(7y —7)M] (D.10)

s rf~>+<x>
x (0| As(p, 77)JE4(0, X4) Jpa(0,0) Al (p, 7;) | 0).

The Euclidean Hamiltonian density is obtained from (4.13)
with z from (D.4)

HET(X) = V(X4)Hr(x)V(fX4)
Using here (D.3) leads to

(D.11)

1 1
Her(X) = 38llag Mag, + 5oy, oy,

_ iHGE4(3jG%j +i(1 = 1r)95GL,)
+ HG%]' (iajG%zl + igfabCG%4G%j +(1— T)agG%j)

1 "
+ ZGEjkGEjk

1 © i o

+ Zq: {qE <27E] aj +§’}/E4(1 — ’I") 63

. o 1
+ IQVEMGEMQ)\a + mq> QE}
+ H‘baEH&E + H¢aE (igfachl]z:4¢% + (1 — r)83¢aE)
+ (1= 1)(0a6) 15, +(0,05)0;0%
- gfabc(aj(lgl%)G%j(ﬁl%,

where all fields on the r.h.s. are at the point X and we
define the Euclidean field strength tensor by

aE,ul/ - alLCTmEu - aVGaEIJ, - gfabCG%yGIc'Eu'

(D.12)

(D.13)

It is now straightforward to verify that Hg, is the Eu-
clidean Hamiltonian density to the Lagrangian density
Lg, of (4.22). Indeed, starting from (4.22) we define the

Euclidean canonical momenta as follows, where G, =
04G%, and so on:

. 8£Er
1 =

GL,

a
GE4

L. Ya : a a
= g{le +10;Gg; — (1 —7)03Ga b,
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Lo _
0Gg; B
= iGan —10;GEy — igfach?EALG]cEj — (1 =7)03GEy,
0L _ e
004,
= igf, — (1 —r)d30%,
18£E7 _ _
~ =1l
09g
= i0% — igfapeGrsdy — (1 — 1)030%,
Ly, i
aqE - qe — QE2’7E47
0Ly, i
7B T = — D ypage. 1
1 9% g, 5 YE4GE (D.14)

The Hamiltonian density (D.12) is now obtained from
(4.22) and (D.14) as

HET = iHG%MGEu +iZ(éEHIjE + HQEQE)
q

+ g of + 9% 150 + Lir, (D.15)
where the X, derivatives GEM etc. have to be considered
as functions of the canonical momenta and the fields by
inverting (D.14).

Having derived the connection of the Euclidean Hamil-
ton and Lagrange densities (D.12) and (4.22) we can use
the standard procedures of the path integral formalism to
show that the matrix elements (D.9) and (D.10) can be
represented by the path integrals (4.26) and (4.27).
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